文档搜索 > Slide 1
Segmentation and Grouping
Computer Vision
CS 543 / ECE 549
University of Illinois
Derek Hoiem
02/23/10
Outline
Last week
Today’s class
EM
Gestalt grouping
German: Gestalt - "form"
or "whole”
Berlin School, early 20th century
Kurt Koffka, Max Wertheimer, and Wolfgang
K?hler
View of brain:
Slide from S. Saverese
Gestalt psychology or gestaltism
The Muller-Lyer illusion
Gestaltism
Explanation
Principles of perceptual organization
From Steve Lehar: The Constructive Aspect of Visual Perception
Principles of perceptual organization
From Steve Lehar: The Constructive Aspect
of Visual Perception
Grouping by invisible completion
From Steve Lehar: The Constructive Aspect
of Visual Perception
Grouping involves global interpretation
Grouping involves global interpretation
From Steve Lehar: The Constructive Aspect of Visual Perception
Gestaltists do not believe in coincidence
Emergence
Gestalt cues
Moving on to image segmentation …
Goal: Break up the image into meaningful or perceptually similar regions
Segmentation for feature support
50x50 Patch
50x50 Patch
Segmentation for efficiency
[Felzenszwalb and Huttenlocher 2004]
[Hoiem et al. 2005, Mori 2005]
[Shi and Malik 2001]
Segmentation as a result
Rother et al. 2004
Types of segmentations
Oversegmentation
Undersegmentation
Multiple Segmentations
Major processes for segmentation
[Levin and Weiss 2006]
Segmentation using clustering
Source: K. Grauman
Feature Space
Image
Clusters on intensity
Clusters on color
K-means clustering using intensity alone and color alone
K-Means pros and cons
D. Comaniciu and P. Meer, Mean Shift:
A Robust Approach toward Feature Space Analysis, PAMI 2002.
Mean shift segmentation
Kernel density estimation
Kernel density estimation function
Gaussian kernel
Mean shift algorithm
Region of
interest
Center of
mass
Mean Shift
vector
Slide by Y. Ukrainitz & B. Sarel
Mean shift
Region of
interest
Center of
mass
Mean Shift
vector
Slide by Y. Ukrainitz & B. Sarel
Mean shift
Region of
interest
Center of
mass
Mean Shift
vector
Slide by Y. Ukrainitz & B. Sarel
Mean shift
Region of
interest
Center of
mass
Mean Shift
vector
Mean shift
Slide by Y. Ukrainitz & B. Sarel
Region of
interest
Center of
mass
Mean Shift
vector
Slide by Y. Ukrainitz & B. Sarel
Mean shift
Region of
interest
Center of
mass
Mean Shift
vector
Slide by Y. Ukrainitz & B. Sarel
Mean shift
Region of
interest
Center of
mass
Slide by Y. Ukrainitz & B. Sarel
Mean shift
Simple Mean Shift procedure:
Computing the Mean Shift
Real Modality Analysis
Slide by Y. Ukrainitz & B. Sarel
Attraction basin
Attraction basin
Mean shift clustering
Segmentation by Mean Shift
http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
Mean shift segmentation results
http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
Mean-shift: other issues
D. Comaniciu
and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis,
PAMI 2002.
Mean shift pros and cons
Watershed algorithm
Watershed segmentation
Image
Gradient
Watershed boundaries
Meyer’s watershed segmentation
Meyer 1991
Matlab: seg = watershed(bnd_im)
Simple trick
Watershed usage
Watershed pros and cons
Things to remember
Further reading
http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf
http://mis.hevra.haifa.ac.il/~ishimshoni/papers/chap9.pdf
http://www.eecs.berkeley.edu/~arbelaez/publications/Arbelaez_Maire_Fowlkes_Malik_CVPR2009.pdf
Next class
All Rights Reserved Powered by 文档下载网
Copyright © 2011