文档搜索 免费文档搜索与下载
http://www.anggang.com/
　　
CS4670

本文档下载自文档搜索网，内容可能不完整，您可以复制以下网址继续阅读或下载：
http://www.anggang.com/pdf/UPC6Sy6WFb4J.html

Page 1

CS670 Final ProjectAli Goheer (mag97) | Irene Liew (isl23)

TRAJECTORY EXTRACTION FROM
SINGLE-VIEW VIDEO SEQUENCE
members:
2

Introduction
this project we created a mobile application for Nokia N900 that can track thetrajectory of a baseball in a single-view baseball video sequence. This trajectory isprojected back onto the input video to further highlight ball’s trajectory.
Overview
program works in 4 distinct steps: 1. Ball Candidate Detection: detect all objects in the video that might be the ball 2. Track Ball Candidates: track the motion of all the ball candidates across theentire video, generating a trajectory path for each ball candidate3. Trajectory evaluation: Pick the path that best fits the motion of a thrown ball fromall the detected trajectories 4. Trajectory Projection: Extract the velocity and acceleration parameters of this“best pathttp://www.anggang.com/pdf/UPC6Sy6WFb4J.htmlh” and use those parameters to calculate the position of the ball forevery frame Figure 1 illustrates a high level overview of our program.
3

Figure 1: Program flowchartHere are more details on these individual processing stages:
Candidate Detection
first smooth each frame using cvSmooth to remove noise and minimize the effect oflight intensity variation. We convert the image into a gray-scale image and filter out thecorners of the images, this minimizes the effect of any peripheral objects withoutaffecting our baseball motion analysis as the ball will always be near the middle of theframe (we feel that this is not an unreasonable constraint to put on the input video). We then subtract each frame from the previous frame to remove all stationary orbackground objects: this leaves us with a video that only has moving objects in it, whichin our video will be the hitter, pitcher, umpire http://www.anggang.com/pdf/UPC6Sy6WFb4J.htmland the ball. Here are a couple of frames from one of our input videos at this stage in our program:
videoBaseballcandidatedetectionTrack ballcandidatesTrajectory evaluationOutputbaseballtrajectory
Process
4

As expected, all the background and non-moving objects have been subtracted outof the video frame. We only see the pitcher, hitter and the ball. Here is another frame from the same input video: in this frame even the hitter has beensubtracted out, probably because he was stationary at this particular instant and weonly detect the pitcher and the baseball. At this point, we apply blob detection (using openCV’s cvBlob library) to chain all theconnected pixels together into blobs, and we finally filter by size to remove the largeblobs. Note that the size limits we use for this are very subjective and will depend uponthe video. We set it to filter out all blobs hahttp://www.anggang.com/pdf/UPC6Sy6WFb4J.htmlving an area outside of 1 to 80 pixels.Here are the same two video frames after blob detection; the blue crosses identify thelocation of the blobs that were detected:
5

Trajectory Tracking
this stage, we track the motion of these detected blobs through the video. We cameup with a relatively simple (but eventually very effective) algorithm to do that: we gothrough every blob in every frame, and try to match it to the blobs in the previousframe. We do this matching both by size and the distance between the two blobs (weassigned 25% weight to the size difference between the two and 75% weight to thedistance between the two). If this matching measure is within a specific threshold, weassume that it’s the same blob that has moved since last frame and record it as such.
6

Otherwise if we found no match for the blob within our threshold, we look through therecent ‘n’ frames and http://www.anggang.com/pdf/UPC6Sy6WFb4J.htmltry to match it to the blobs in those previous frames, again withina threshold. If we find a match, we assume that it’s the same blob, which for occlusionor some other reason didn’t appear in the in-between frames but is detected in thiscurrent frame once again. However, on the other hand, if we have still not found a match, we assume that thisblob in the current frame is a new blob that did not appear in the previous frames, sowe record it as a new frame and start tracking its motion as well. At the end of this stage of our program, we have a data structure that contains thetrajectories of all distinct blobs detected in the video. In the following image, we haveplotted the motion of all the blobs in one of our videos: in this image each trackedtrajectory is given a different color Note that all the ball positions detected have the same color, i.e. the ball’s motionthroughout the entire video was correctly identified as the motionhttp://www.anggang.com/pdf/UPC6Sy6WFb4J.html of one blob.
7

Best Trajectory Selection
our program has to pick the ball’s trajectories from all the other trajectories thatwere detected. We apply 2D Kinematics to achieve that. Note that the ball in our video will be the only object that will follow be moving throughthe air under an initially applied acceleration and velocity and thus will assume thephysics equations that govern motion of such objects (Kinematics): ? Sx = Vix * t 0.5 * ax * t2(motion along x axis of the video)? Sy = Viy * t 0.5 * ay * t2(motion along y axis of the video)All the other objects (hitter’s body, the bat, pitcher’s body) will be moving under aconstantly applied force and thus will not fit these equations. So, we fit all the detectedtrajectories to these equations using cvSolve and matrices, and then find the sum-square-error (SSE) of this fitting across the entire trajectory. We pick the trajectory withhttp://www.anggang.com/pdf/UPC6Sy6WFb4J.htmlthe lowest SSE. Note that relatively stationary objects (such as pitcher’s feet) will alsoend up fitting these equations surprisingly well, so to correct for that, we also furtherimpose the condition that the best-path actually includes moving objects (i.e. velocityand acceleration of that blob is greater than a threshold. After this stage, our program correctly outputs the best trajectory, as shown in theimage below
8

Re-projection of Trajectory onto Original Video
this final stage, we project red-circles onto the original video’s frames to identify theball’s position being detected (see attached video clips). We also use the baseball’svelocity and acceleration parameters to “guess” the trajectory of the ball. We plotthese positions using blue circles.
Results
tried our program on numerous MLB videos that we found online. We also shotnumerous videos from N900 and phttp://www.anggang.com/pdf/UPC6Sy6WFb4J.htmlrocessed them through the video. Our programsuccessfully tracked the ball in almost every video, although sometimes it failed to pickthe ball’s trajectory as the best candidate because as described earlier, relatively staticobjects will also fit our physics equations quite well.
9

Also, when we use the extracted acceleration and velocity parameters to guess thetrajectory of the ball (blue circles), our guessed trajectory was quite different from theoriginally detected trajectory. However, we feel that if we had the time to apply moreaccurate physics equations (involving drag coefficients etc) and if we had time toapply Kalman Filtering to remove outlier data points (see the ‘future work’ sectionbelow), our results would have been more accurate for the ‘guessed’ trajectory. We recorded the sample output of two of our test videos, these videos have the redand blue circles drawn by our program that point out thttp://www.anggang.com/pdf/UPC6Sy6WFb4J.htmlhe positions of the ball detected,and the guessed positions of the ball respectively. These videos are included in thereport zip file and they are:? baseball_output1.avi - it shows our program’s output after analyzing a clip froman MLB game ? baseball_output2.avi – it shows our program’s output after analyzing a clip weshot ourselvesWe are also including some screenshots of the program running successfully on NokiaN900:This is a screenshot of our program analyzing MLB game clip.
10

This is a screenshot of the our program analyzing a clip we shot ourselves using NokiaN900

only time when our code actually failed was when there was significant pan andzoom in the video (e.g. the camera zooming in to capture pitcher’s facial expressionright after the baseball pitch). This would introduce too many new moving blobs thatwould overwhelm our algorithm. But we feel that it would be uhttp://www.anggang.com/pdf/UPC6Sy6WFb4J.htmlnreasonable to ask ourprogram to handle such situations. On the other hand, changes in light intensity and background noise did not affect ourprogram’s output.
Work
the future, this code could be optimized so that it’s fast enough to run in real time.We in fact tried to do that but ran out of time. We would also have liked to spend moretime on following tasks: ? The ball isn’t always correctly detected in all frames, so we have gaps in ourbaseball trajectory, we would have liked to fill in those gaps by applying Kalman
11

filter to the trajectory s? We also would have liked to add an additional feature to our program whereinthe user could throw a few controlled pitches in the very beginning to helpcalibrate the program more accurately ? Our algorithm has obvious applications in many other sports outside of baseball,such as cricket, tennis etc. It would have been interesting to adaphttp://www.anggang.com/pdf/UPC6Sy6WFb4J.htmlt our code todetect ball trajectories in these other sports as well.
Breakdown by Individual Team Members
Liew: filtering the input video and then applying blob detection to identify theblobs in the video; create the Maemo framework and GUI for both the desktop andNokia N900 program; Ali Goheer: tracking the motion of these blobs, and then applying Kinematics to identifythe ball’s trajectory

used the following research paper as our primary source of direction ? Extraction of Baseball Trajectory and Physically-based Validation for Single-viewBaseball Video Sequences
://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4036974
we also used the following open-source openCV library add-on for blobdetection/extraction? Blob detection library for OpenCV – cvblob
://code.google.com/p/cvblob/
Here are a few sample screenshots of video s we http://www.anggang.com/pdf/UPC6Sy6WFb4J.htmlused:
12

Here we used the “green” circle to replace the “red” circle which indicates the realdetected trajectory. The “blue” circle is our predicted trajectory.

文档搜索网是专业的免费文档搜索与下载网站，提供行业资料，考试资料，教学课件，学术论文，技术资料，研究报告，工作范文，资格考试，专业文献，应用文书，行业论文等文档搜索与文档下载，是您文档写作和查找参考资料的必备网站。
文档搜索 http://www.anggang.com/
亿万文档资料，等你来免费下载

