文档搜索 免费文档搜索与下载
http://www.anggang.com/
　　
1 Stored Procedures in PL/SQL 2 PL/SQL

本文档下载自文档搜索网，内容可能不完整，您可以复制以下网址继续阅读或下载：
http://www.anggang.com/pdf/rR9JoG7Nl8MJ.html

Page 1

1 Stored Procedures in PL/SQL
modern databases support a more procedural approach to databases—they allow youto write procedural code to work with data. Usually, it takes the form of SQL interweavedwith the more familiar IF statements, etc.Note that this has nothing to do with accessing the database. You can access any databasefrom virtually any language. What we’re talking about is the code that is executed by thedatabase server.While there are many various ‘database’ languages, we will only talk about the primarytwo: T-SQL, which is supported by SQL Server and Sybase, and PL/SQL, which is supportedby Oracle.Many other languages may be supported. For example, Oracle allows you to write storedprocedures and triggers in Java, etc.
PL/SQL
plain vanilla SQL, Oracle supports PL/SQL. The PL stands for Procedural Lan-guage, which means you can have things like IF statements, loops, variables, and otherprocedural things alonghttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.html with declarative SQL statements. PL/SQL
.1 Variables
as most procedural languages, PL/SQL has some sort of variables. The types of variablesare plain SQL column types that you’re all used to. You can also refer to a type of a particularcolumn explicitly by specifying the fully qualified column name (tablename.columname)followed by %TYPE. For example: PRODUCT.PRICE%TYPE.Similarly, we can refer to a particular row as a single type. Again, you declare it byreferring to a database table directly: PRODUCT%ROWTYPE. This would refer to a single recordstored in the PRODUCT table.Along with the above mentioned, some common types are: BOOLEAN, DATE, NUMBER, CHAR,and VARCHAR2.We declare variables of these types similarly to specifying columns in tables. First, welist the name of the variable, then the type we want it to have. For example, to declare aprice variable of a fixed point NUMBER, we might do something like this:http://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlPRICE NUMBER(6,2);
.2 PL/SQL Program Blocks
/SQL programs are structured in blocks and have the following format:DECLAREvariable_declarationsBEGINprocedural_code1
2

EXCEPTIONerror_handlingEND;2.2.1 DeclareThe declare part is where variable declaration goes. All used variables must be declared inthis section. This is also the place where other more exotic variable types are declared, likecursors and exceptions.2.2.2 BeginThis is the part we’re most interested in. This is where the bulk of your programs shall beplaced. Here, you can have IF statements, loops, etc.2.2.3 ExceptionsThe exception section is where we place error handling code. We will talk about it moredepth in subsequent lessons.2.2.4 EndThe end signifies the end of this program block.
.3 Operators
/SQL supports several operators to do various things. Table 1 lists some of the morecommon operators.
://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlar2.4 Hello World and a bit Beyond...
, let’s start with the PL/SQL hello world example. Before we write it however, thereare a couple of things that need to be setup. First, start “SQL*Plus” (Oracle), login, andtype:SET SERVEROUTPUT ONWhat this does is enable you to view output in SQL*Plus window whenever your pro-grams attempts to write some output to the screen.Now, let’s get on with the show. Type the following into the SQL*Plus window as is:BEGINDBMS_OUTPUT.PUT_LINE(’Hello World’);END;You’ll notice that it doesn’t run as an average SQL statement. To make it run, you musttype the ’/’ character on a line by itself. And you’ll notice:2
3

SQL> BEGIN2DBMS_OUTPUT.PUT_LINE(’Hello World’);3 END;4 /Hello WorldPL/SQL procedure successfully completed.You can think of DBMS_OUTPUT.PUT_LINE() as sort of a printf() in C language. Itwrites output to the console; but it only works for strings (or dathttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmla that can be implicitlyconverted to a string).You can also do more complicated things, like access global variables like SYSDATE. Forexample:SQL> BEGIN2DBMS_OUTPUT.PUT_LINE(’The time now is: ’);3DBMS_OUTPUT.PUT_LINE(SYSDATE);4 END;5 /The time now is:31-JUL-02We’re not done with this simple example yet. We can also modify the DATE format:??Exponentiation?Multiplication/Division Addition?Subtraction?Negation:=Assignment=Equals Comparison<>Not Equals Comparison! =Not Equals Comparison>Greater Than Comparison<Less Than Comparison>=Greater Than or Equal Comparison<=Less Than or Equal ComparisonAND The obvious AND operationORThe obvious OR operation:=Assignment||String ConcatenationTable 1: PL/SQL Operators3
4

SQL> BEGIN2DBMS_OUTPUT.PUT_LINE(’The time now is: ’);3DBMS_OUTPUT.PUT_LINE(TO_CHAR(SYSDATE,’MM/DD/YYYY’));4 END;5 /The time now is:07/31/2002
.5 Type Chttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlonversion Functions
the previous example, you can see we’ve used the TO_CHAR function to format the date.Table 2 lists some of these useful functions.TO_DATE Converts a string to a date.TO_NUMBER Converts a character string to a number.TO_CHAR Converts numbers or dates to character strings.Table 2: Some PL/SQL Functions
.6 Character String Functions
are a number of functions for handling character string data in PL/SQL, these includethe easy to use string catenation operator. For example, we could have written our timenow is example as:SQL> BEGIN2DBMS_OUTPUT.PUT_LINE(’The time now is: ’ || SYSDATE);3 END;4 /The time now is: 31-JUL-02Note that || was used to concatenate the string ’The time is now: ’ with theSYSDATE. Some of the more useful PL/SQL are listed in Table 3.RTRIM(STR) Removes blank spaces from right side of string.LENGTH(STR) Returns the length of the string.UPPER(STR) Converts thehttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.html string to upper case.LOWER(STR) Converts the string to lower case.INSTR(STR1,STR2) Looks for STR2 in STR1.SUBSTR(STR,START,END) Returns a substring that starts at START.Table 3: More PL/SQL FunctionsSubstring example follows:4
5

SQL> SELECT SUBSTR(’HELLO’,2,4) FROM DUAL;SUBS----ELLO
.7 PL/SQL IF Statement
/SQL, being a procedural language naturally has lots of flow control constructs, from IFstatements to WHILE loops.Remember to type: SET SERVEROUTPUT ON in SQL*Plus before running any programs,so that you can see the output.
.8 IF - THEN Structure
general format of an IF statement is:IF condition THENprogram_statementsEND IF;Assuming we all know how to program, and know what IF statements are, I’m not goingto spend too much time on the obvious.An example program that uses an IF statement is:DECLAREA NUMBER(6);B NUMBER(6);BEGINA := 23;B := A * 5;IF A < B THENhttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlDBMS_OUTPUT.PUT_LINE(’Ans: ’ || A || ’ is less than ’ || B);END IF;END;Which produces the expected output of:Ans: 23 is less than 115
.9 IF - ELSE Structure
as in any programming language that has an IF statement, there is also the ELSE clauseto the IF statement. The full structure of an IF statement is thus:5
6

IF condition THENif_condition_is_true_codeELSEif_condition_is_false_codeEND IF;Let’s modify our simple example to:DECLAREA NUMBER(6);B NUMBER(6);BEGINA := 23;B := A / 5;IF A < B THENDBMS_OUTPUT.PUT_LINE(’Ans: ’ || A || ’ is less than ’ || B);ELSEDBMS_OUTPUT.PUT_LINE(’Ans: ’ || A || ’ is greater than ’ || B);END IF;END;Note that we’ve also modified the B := A * 5 to B := A / 5 in order to test the ELSEcondition.
.10 IF Statement nesting
can also put IF statements inside other IF statements. Here, again, let’s jump right intoan example:DECLAREA NUhttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlMBER(6);B NUMBER(6);C NUMBER(6);ABCMAX NUMBER(6);BEGINA := 23;B := A / 5;C := B * 7;IF A > B THENIF A > C THENABCMAX := A;ELSEABCMAX := C;END IF;ELSEIF B > C THEN6
7

ABCMAX := B;ELSEABCMAX := C;END IF;END IF;DBMS_OUTPUT.PUT_LINE(’Max of: ’ || A || ’, ’ || B ||’, and ’ || C || ’ is ’ || ABCMAX);END;The code above finds the maximum value (ABCMAX) of three variables (A, B, and C).The code looks self explanatory; so we won’t spend much time on it.
.11 IF ELSIF Structure
IF and ELSE are not enough, we can resort to using ELSIF. This is an else if equivalentin C (and in Perl it is actually named elsif).Let’s say we wanted to calculate the letter grade given a number grade, we may write aprogram such as:DECLARENGRADE NUMBER;LGRADE CHAR(2);BEGINNGRADE := 82.5;IF NGRADE > 95 THENLGRADE := ’A ’;ELSIF NGRADE > 90 THENLGRADE := ’A’;ELSIF NGRADE > 85 THENLGRADE := ’B ’;ELShttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlIF NGRADE > 80 THENLGRADE := ’B’;ELSIF NGRADE > 75 THENLGRADE := ’C ’;ELSIF NGRADE > 70 THENLGRADE := ’C’;ELSIF NGRADE > 65 THENLGRADE := ’D ’;ELSIF NGRADE > 60 THENLGRADE := ’D’;ELSELGRADE := ’F’;END IF;7
8

DBMS_OUTPUT.PUT_LINE(’Grade ’ || NGRADE || ’ is ’ || LGRADE);END;Which for our particular example number grade produces output:Grade 82.5 is B
.12 PL/SQL - SQL
, we can run SQL statements inside PL/SQL! Isn’t that amazing?We can’t use all of SQL though, we can only use DML (Data Manipulation Language)which includes statements like SELECT, INSERT, UPDATE, and DELETE, and transaction controlstatements, like COMMIT, ROLLBACK, SAVEPOINT.The only limitation seems to be are DDL statements, which are used to CREATE, ALTER,and DROP tables, and GRANT privileges, just to name a few.2.12.1 Simple ExampleFor right now, here’s a simple example. We’ll do more as we learn PL/SQL. Inhttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.html this example,we’ll insert a new PRODUCT into a simple database.DECLAREPID NUMBER(6);BEGINPID := 20;INSERT INTO product VALUES (PID,’tv’,32,199.99);PID := PID 1;INSERT INTO product VALUES (PID,’vcr’,16,799.98);COMMIT;END;We can now run a SELECT statement to retrieve the values we’ve inserted:SELECT * FROM PRODUCT WHERE PRODUCT_ID >= 20;Which produces the expected results:PRODUCT_ID DESCRIPTION---------- ------------20 tv21 vcrNotice that in our example, we used a variable named PID inside our INSERT statement.That’s the real power of PL/SQL, where we can use procedural language constructs andvariables to drive our database SQL code. PL/SQL LoopsJust as with IF statements, PL/SQL also has loops. Loops are used to repeat someaction multiple times, until some condition is met.PL/SQL has five looping structures, and we shall talk about each one in more depth aswe move along. So without further interruption, I present to http://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlyou...8
9

2.13 LOOP ... EXIT Loop
general format of such a loop is:LOOPvarious_statementsIF condition THENEXIT;END IF;various_statementsEND LOOP;This loop is very similar to an infinite loop in C/C , where you use break; to terminatethe loop; in this case, the EXIT; command takes the form of break.Note that we can place various program statements before the exiting IF statement andafter, which gives us great flexibility about when and how the condition is evaluated.An example of such a loop would be:DECLAREI NUMBER(6);BEGINI := 1;LOOPDBMS_OUTPUT.PUT_LINE(’aI: ’ || I);I := I 1;IF I > 5 THENEXIT;END IF;DBMS_OUTPUT.PUT_LINE(’bI: ’ || I);END LOOP;END;With the expected output of:aI: 1bI: 2aI: 2bI: 3aI: 3bI: 4aI: 4bI: 5aI: 59
10

Note that you should SET SERVEROUTPUT ON; in order to see the output in SQL*Plusscreen.Also, it would be very helpful if yhttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlou trace the above program to ensure that you under-stand how the loop functions and why the results look as they do. I shall not provide theoutput for the following code, and expect you to run it yourself.
.14 LOOP ... EXIT WHEN Loop
simplify our writing our the IF statement, there is a simpler form, the EXIT WHEN loop.The general format of such a loop is:LOOPvarious_statementsEXIT WHEN condition;various_statementsEND LOOP;An example usage of such a loop would be something like this:DECLAREI NUMBER(6);BEGINI := 1;LOOPDBMS_OUTPUT.PUT_LINE(’aI: ’ || I);I := I 1;EXIT WHEN I > 5;DBMS_OUTPUT.PUT_LINE(’bI: ’ || I);END LOOP;END;You should run this code yourself. It would actually be more helpful if you write out theoutput first, and then compare it to the actual results.
.15 WHILE ... LOOP Loop
next loop is the all familiar WHILE loop, except now it is in PL/SQL and not in C/C .It workshttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.html nearly identically though. The idea is that you have a condition which is testedeach time through the loop, and if it’s false, the loop terminates.The general format of such a loop is:WHILE conditionLOOPvarious_statementsEND LOOP;10
11

Our typical (as in typical for these class notes) would be:DECLAREI NUMBER(6);BEGINI := 1;WHILE I <= 5LOOPDBMS_OUTPUT.PUT_LINE(’aI: ’ || I);I := I 1;DBMS_OUTPUT.PUT_LINE(’bI: ’ || I);END LOOP;END;Just as with the previous code, you should try to figure out what the output is, and thenrun it to see if your trace was correct. Tracing questions such as these are fair game forquizzes and tests.
.16 FOR Loop
is also the traditional numeric FOR loop that’s commonly found in most procedurallanguages. The general format of such a loop is:FOR countervariable IN startvalue .. endvalueLOOPvarious_statementsEND LOOP;The start and end values must be http://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlintegers, and are always incremented by one. Anexample of such a loop would be:BEGINFOR I IN 1..5LOOPDBMS_OUTPUT.PUT_LINE(’I: ’ || I);END LOOP;END;Notice that we never actually directly initialize I, or even declare it! It is done implicitlyfor us by the FOR loop. You should run this code to ensure you understand it.You can also use other variables to loop on. For example, to loop from J to K, you’d dosomething like:DECLAREJ NUMBER(6);K NUMBER(6);11
12

BEGINJ := 7;K := 2;FOR I IN K..JLOOPDBMS_OUTPUT.PUT_LINE(’I: ’ || I);END LOOP;END;Again, notice that we never actually initialize nor declare I. In fact, the I in the loop isa totally different variable. Even if you have an I variable declared, the loop will still use itsown version. You can verify that by running this code:DECLAREI NUMBER(6);BEGINI := 7;DBMS_OUTPUT.PUT_LINE(’BEFORE LOOP I: ’ || I);FOR I IN 1..5LOOPDBMS_OUTPUT.PUT_LINE(’Ihttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlN LOOP I: ’ || I);END LOOP;DBMS_OUTPUT.PUT_LINE(’AFTER LOOP I: ’ || I);END;Which interestingly enough, prints out:BEFORE LOOP I: 7IN LOOP I: 1IN LOOP I: 2IN LOOP I: 3IN LOOP I: 4IN LOOP I: 5AFTER LOOP I: 7Which illustrates that the value of our declared variable I is unchanged by the loop (andthat the loop internally has I declared which is different from our explicitly declared I).
.17 Cursors
we move on with our discussion of the next and last loop construct, we must coverthe concept of Cursors.Oracle has two major different types of cursors. One is implicit and the other one isexplicit.12
13

2.18 Implicit Cursor
cursors can be generated every time you do a SELECT statement in PL/SQL. Thegeneral format goes something like this:SELECT selectfields INTO declared_variables FROM table_list WHERE search_criteria;The only catch is that the search criteria must returhttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmln one and only one result. If itreturns zero, or more than one, an error is generated.For example, lets say we wanted to get the name and price of some specific product(identified by PRODUCT_ID):DECLARENAME PRODUCT.DESCRIPTION%TYPE;AMOUNT PRODUCT.PRICE%TYPE;BEGINSELECT DESCRIPTION,PRICE INTO NAME, AMOUNTFROM PRODUCT WHERE PRODUCT_ID = 4;DBMS_OUTPUT.PUT_LINE(’PRICE OF ’ || NAME || ’ IS ’ || AMOUNT);END;Which faithfully displays out:PRICE OF keyboard IS 19.95Assuming the “keyboard” is in the database and has PRODUCT ID = 4 (and has thatprice).Note that we used the table’s types, which brings up another issue: Now is a pretty goodtime to illustrate the ROWTYPE type. Let’s rewrite the above using that.DECLAREP PRODUCT%ROWTYPE;BEGINSELECT * INTO P FROM PRODUCT WHERE PRODUCT_ID = 4;DBMS_OUTPUT.PUT_LINE(’PRICE OF ’ || P.DESCRIPTION || ’ IS ’ || P.PRICE);END;Notice that the code got a lot smaller since we don’t have to worry ahttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlbout defining everysingle variable for retrieval purposes. We retrieve a whole row of data at a time. The outputof the above code is exactly the same as the previous.
.19 Explicit Cursor
Cursors are cursors that you have to explicitly declare, and which give you a lotmore flexibility than the implicit ones.To declare an explicit cursor, you have to do it in the DECLARE section. The format lookssomething like:CURSOR cursorname IS SELECT_statement;Where SELECT_statement is any select statement (except a more exotic one which con-tains a UNION or MINUS.13
14

3 Opening an Explicit Cursor
order to use an explicit cursor, you must open it. You do that with a simple:OPEN cursorname;(obviously you have to do that inside the code section, between BEGIN and END).
.1 Fetching Data into an Explicit Cursor
opening the cursor, we also have to grab the results of thehttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.html SELECT statement one byone. We do that with a FETCH. For example:FETCH cursorname INTO recordvariables;We shall do some examples when we learn our cursor loops, so hang on...
.2 Closing a Cursor
a cursor is just as easy as opening it. We just say:CLOSE cursorname;Cursors will be closed automatically once your code exits, but it’s still a good idea toclose them explicitly.
.3 LOOP ... EXIT WHEN Loop (Again)
can use our standard loops in order to go loop through the results returned by the cursor.So, let’s move on to our example:DECLAREP PRODUCT%ROWTYPE;CURSOR PRODUCTCURSOR ISSELECT * FROM PRODUCT;BEGINOPEN PRODUCTCURSOR;LOOPFETCH PRODUCTCURSOR INTO P;EXIT WHEN PRODUCTCURSOR%NOTFOUND;DBMS_OUTPUT.PUT_LINE(’PRICE OF ’ || P.DESCRIPTION || ’ IS ’ || P.PRICE);END LOOP;CLOSE PRODUCTCURSOR;END;14
15

Go through the code line by line. First, we declare our P variable http://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlwhich is a ROWTYPEfrom table PRODUCT. We then declare our CURSOR, which simply selects everything from thePRODUCT table.Our code then proceeds to OPEN the cursor. We then fall into our standard loop (whichwe learned about earlier), and FETCH results from the CURSOR. We EXIT the loop if we gotno more results (the PRODUCTCURSOR%NOTFOUND condition). If we did not exit the loop, weoutput product description and product price.In the end, we just CLOSE the cursor. Depending on what you have in your PRODUCTtable, the results of the code may look similar to this:PRICE OF mice IS 26.99PRICE OF keyboard IS 19.95PRICE OF monitor IS 399.99PRICE OF speakers IS 9.99PRICE OF stapler IS 14.99PRICE OF calculator IS 7.99PRICE OF quickcam IS 99.98PRICE OF harddrive IS 199.99PRICE OF tv IS 199.99PRICE OF vcr IS 799.98You should go through the code, trace it, run it, and make sure you understand it.
.4 Cursor Attributes
’ve alrhttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmleady seen one of the more important cursor attributes, the %NOTFOUND. There arealso these:%NOTFOUND: Evaluates to TRUE when cursor has no more rows to read. FALSE otherwise.%FOUND: Evaluates to TRUE if last FETCH was successful and FALSE otherwise.%ROWCOUNT: Returns the number of rows that the cursor has already fetched from thedatabase.%ISOPEN: Returns TRUE if this cursor is already open, and FALSE otherwise.
.5 Cursor FOR ... IN ... LOOP Loop
is also a special loop structure made specifically for working with cursors. It allows foreasier cursor handling; it opens and closes the cursor for us, and we don’t have to explicitlycheck for the end.It is a for loop that has the general format:FOR variable(s) IN cursorname LOOPvarious_program_statementsEND LOOP;Let us rewrite our example program (presented earlier) to use this new type of loop:15
16

DECLAREP PRODUCT%ROWTYPE;CURSOR PRODUCTChttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlURSOR ISSELECT * FROM PRODUCT;BEGINFOR P IN PRODUCTCURSOR LOOPDBMS_OUTPUT.PUT_LINE(’PRICE OF ’ || P.DESCRIPTION || ’ IS ’ || P.PRICE);END LOOP;END;Notice that the code got quite a bit simpler, with lots of cursor handling code gone; whichis now being handled by the loop itself.If you’re really into optimization, you might want to improve the above code not to returnthe whole %ROWTYPE but individual fields which we’re displaying, for example:DECLARECURSOR PRODUCTCURSOR ISSELECT DESCRIPTION,PRICE FROM PRODUCT;BEGINFOR P IN PRODUCTCURSOR LOOPDBMS_OUTPUT.PUT_LINE(’PRICE OF ’ || P.DESCRIPTION || ’ IS ’ || P.PRICE);END LOOP;END;Notice several things about the code: that we no longer declare P which is used forloop purposes. Also notice that our cursor is no longer returning everything, but just twoindividual fields which we’re displaying.
.6 Introduction to Stored Procedures
like any other procedural languaghttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmle, PL/SQL has code fragments that are called PROCEDURES.You can call these PROCEDURES from other code fragments, or directly from SQL*Plus(or some other client program).Before you begin to write procedures though, you need to verify that you have enoughprivileges to do that. If you don’t (which probably means you’re using a plain user account),then you need to login as administrator (or ask the administrator) to grant you access. Togrant such priviledge yourself (in case you’re the administrator - running Oracle on your ownmachine) you can do:GRANT CREATE PROCEDURE TO someusername;From that point on, the user someusername will be allowed to create, drop, and replaceprocedures and functions.16
17

3.7 PROCEDURES
are code fragments that don’t normally return a value, but may have some outsideeffects (like updating tables). The general format of a procedure is:PROCEDURE procedure_name ISBEGIhttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlNprocedure_bodyEND;Of course, you’ll usually be either creating or replacing the procedure, so you’d want toadd on CREATE (OR REPLACE) to the declaration. For example, to create (or replace) a HELLOprocedure, you might do something like this:CREATE OR REPLACEPROCEDURE HELLO ISBEGINDBMS_OUTPUT.PUT_LINE(’Hello World’);END;The above declares a HELLO procedure that just displays ’Hello World’. You can runit as part of a code fragment, or inside other procedures (or functions). For example:BEGINHELLO();END;Or you can simply execute it in SQL*Plus by typing:CALL HELLO();
.8 General Format
general format of a create procedure statement is this:CREATE OR REPLACEPROCEDURE procedure_name (parameters) ISBEGINprocedure_bodyEND;Where procedure_name can be any valid SQL name, parameters is a list of parameters tothis procedure (we’ll discuss them later), and procedure_body is various PL/SQL statementsthat make http://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlup the logic of the procedure.17
18

3.8.1 ParametersThe parameters (or arguments) are optional. You don’t have to specify anything (not eventhe parenthesis). For example, a sample procedure, which you no doubt have already seen:CREATE OR REPLACEPROCEDURE HELLOWORLD ISBEGINDBMS_OUTPUT.PUT_LINE(’Hello World!’);END;Never actually defines any parameters. What’s the use of a procedure that doesn’t takeany parameters and doesn’t return anything? Well, you may be interested in the procedure’sside effects, like in our case, we’re interested in our procedure displaying ’Hello World!’ andnothing else. There may be many instances where you may want to just do something tothe database, without any particular parameters, and without returning anything.Anyway, this section is about parameters so let’s talk about parameters.Parameters are defined in a similar way as in a CREATE TABLE statement, which is similarto how http://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlvariables are declared. You first specify the name of the variable, and then the type.For example:(N INT)Would setup some procedure to accept an INT variable named N. Writing a simple pro-cedure to display a variable name, you can come up with something like this:CREATE OR REPLACEPROCEDURE DISPN (N INT) ISBEGINDBMS_OUTPUT.PUT_LINE(’N is ’ || N);END;Which if you call, will promptly display:SQL> CALL DISPN(1234567891);N is 1234567891You can also have multiple parameters. For example, you can accept A and B and displaytheir sum and product.CREATE OR REPLACEPROCEDURE DISP_AB (A INT, B INT) ISBEGINDBMS_OUTPUT.PUT_LINE(’A B = ’ || (A B));DBMS_OUTPUT.PUT_LINE(’A * B = ’ || (A * B));END;18
19

Which when ran, displays something like (depending on the values you provide):SQL> CALL DISP_AB(17,23);A B = 40A * B = 391Btw, it should be noted that you can use any PL/SQL type as an argument. For example,http://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlVARCHAR and others are perfectly acceptable. For example:CREATE OR REPLACEPROCEDURE DISP_NAME (NAME VARCHAR) ISBEGINDBMS_OUTPUT.PUT_LINE(’Hi ’ || NAME || ’!’);END;Which when called displays:SQL> CALL DISP_NAME(’John Doe’);Hi John Doe!
.9 IN, OUT, IN OUT
are various different parameter varieties (not types). For example, for the time being,we’ve only been giving the procedure data via parameters. This is the default (IN).What we could also do is get data from the procedure, via an OUT parameter. To do that,we simply specify OUT in between the parameter name and its type. For example:CREATE OR REPLACEPROCEDURE SUM_AB (A INT, B INT, C OUT INT) ISBEGINC := A B;END;Notice that the above code does not display the resulting sum, it just changes the valueof the C parameter. Also notice the word OUT right after the declaration of C parametername.Anyway, we will use a code fragment to call the procedure:DECLhttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlARER INT;BEGINSUM_AB(23,29,R);DBMS_OUTPUT.PUT_LINE(’SUM IS: ’ || R);END;Which when ran, displays:19
20

SUM IS: 52Notice how we called the procedure with an argument to eventually retrieve the OUTresult.There is also the other special way of passing parameters: IN OUT. What that means isthat we first can read the parameter, then we can change it. For example, we can write aprocedure that doubles a number:CREATE OR REPLACEPROCEDURE DOUBLEN (N IN OUT INT) ISBEGINN := N * 2;END;To run it, we also create a small code fragment:DECLARER INT;BEGINR := 7;DBMS_OUTPUT.PUT_LINE(’BEFORE CALL R IS: ’ || R);DOUBLEN(R);DBMS_OUTPUT.PUT_LINE(’AFTER CALL R IS: ’ || R);END;Which when ran displays:BEFORE CALL R IS: 7AFTER CALL R IS: 14Notice how this particular call first grabbed the value of a parameter, then set it in orderto return the double of the value.You can generally intermix these various ways of phttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlassing parameters (along with varioustypes). You can use these to setup return values from procedures, etc.
.10 Dropping Procedures
you’re interested in getting rid of a procedure totally, you can DROP it. The generalformat of a DROP is:DROP PROCEDURE procedure_name;That’s all there is to stored procedures. We will do some practice exercises and moreexperimentation, but overall, that’s all there is to them.20
21

3.11 Functions
are special types of procedures that have the capability to return a value.It is a very shady question of when to use what, either functions or procedures. A goodrule of thumb is: if you’re interested in the “results” of the code, then you use a function,and return those results. If you’re interested in the “side effects” (like table updates, etc.)and not about the ”result” when you should use a procedure. Usually it doesn’t affect yourcode all that mhttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmluch if you use a procedure or a function.
.12 General Format
general format of a function is very similar to the general format of a procedure:CREATE OR REPLACEFUNCTION function_name (function_params) RETURN return_type ISBEGINfunction_bodyRETURN something_of_return_type;END;For example, to write a function that computes the sum of two numbers, you might dosomething like this:CREATE OR REPLACEFUNCTION ADD_TWO (A INT,B INT) RETURN INT ISBEGINRETURN (A B);END;To run it, we’ll write a small piece of code that calls this:BEGINDBMS_OUTPUT.PUT_LINE(’RESULT IS: ’ || ADD_TWO(12,34));END;Which procudes the output:RESULT IS: 46All of a sudden, we know how to make functions (since we already know how to crateprocedures). That’s really all there is to it.21
22

3.13 Dropping Functions
drop a function, you do it in a similar way to a procedure. You simply say:DROP FUNCTION functihttp://www.anggang.com/pdf/rR9JoG7Nl8MJ.htmlon_name;Oh, btw, to display the list of procedures/functions or plain general user objects thatyou have you can run a query:SELECT OBJECT_NAMEFROM USER_OBJECTSWHERE OBJECT_TYPE = ’FUNCTION’;You can do a similar thing for procedures.22

文档搜索网是专业的免费文档搜索与下载网站，提供行业资料，考试资料，教学课件，学术论文，技术资料，研究报告，工作范文，资格考试，专业文献，应用文书，行业论文等文档搜索与文档下载，是您文档写作和查找参考资料的必备网站。
文档搜索 http://www.anggang.com/
亿万文档资料，等你来免费下载

